New test to detect oral cancer

A new test for oral cancer, which a dentist could perform by simply using a brush to collect cells from a patient’s mouth, is set to be developed by researchers at the University of Sheffield and Sheffield Teaching Hospitals NHS Foundation Trust.

The international research team, involving scientists in Sheffield, has been awarded $2 million from the United States National Institutes of Health to develop the test, which could provide an accurate diagnosis in less than 20 minutes for lesions where there is a suspicion of oral cancer.

The current procedure used to detect oral cancer in a suspicious lesion involves using a scalpel to perform a biopsy and off-site laboratory tests, which can be time consuming. The new test will involve removing cells with a brush, placing them on a chip, and inserting the chip into the analyzer, leading to a result in eight to 10 minutes. This new procedure will have a number of benefits, including cutting waiting times and the number of visits, and also cost savings for the National Health Service.

The team in Sheffield, led by Prof. Martin Thornhill, in the department of oral medicine at the University of Sheffield and a consultant in oral medicine at Sheffield Teaching Hospitals, has begun carrying out clinical trials on patients at Charles Clifford Dental Hospital for two years to perfect the technology and make it as sensitive as possible. If the trials confirm that the new technology is as effective as carrying out a biopsy, then it could become a regular application at dental offices in the future.

If oral cancer is detected early, the prognosis for patients is excellent, with a five-year survival rate of more than 90 percent. Unfortunately, many oral cancers are not detected at the early stages, and the overall survival rate is only about 50 percent, among the lowest rates for all major cancers. The project is being led by Prof. John McDevitt from Rice University, who has developed the novel microchip.

This new technology uses the latest techniques in microchip design, nanotechnology, microfluids, image analysis, pattern recognition and biotechnology to shrink many of the main functions of a state-of-the-art clinical pathology laboratory onto a nano-biochip the size of a credit card.

The nano-biochips are disposable and slotted like a credit card into a battery-powered analyzer. A brush-biopsy sample is placed on the card and microfluidic circuits wash cells from the sample into the reaction chamber. The cells pass through mini-fluidic channels about the size of small veins and come in contact with “biomarkers” that react only with specific types of diseased cells. The machine uses two LEDs, or light-emitting diodes, to light up various regions of the cells and cell compartments. Healthy and diseased cells can be distinguished from one another by the way they glow in response to the LEDs.

The technology is also being considered for future research projects for diagnosis and management of heart attacks, diabetes and other diseases. Thornhill said: “This new technology will make it easier for us to screen suspicious lesions in the mouth and reassure the vast majority of patients that they haven’t got another by the way they glow in response to the LEDs.”

The technology is also being considered for future research projects for diagnosis and management of heart attacks, diabetes and other diseases. Thornhill said: “This new technology will make it easier for us to screen suspicious lesions in the mouth and reassure the vast majority of patients that they haven’t got another by the way they glow in response to the LEDs.”

“Ultimately, dentists and doctors may be able to use this technology to check suspicious lesions in the mouth and reassure the vast majority of patients that they haven’t got cancer without even having to send them to the hospital.”

(Source: University of Sheffield)